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Abstract. A detailed analysis of experimentally obtained curvilinear crack path trajectories
formed in a heterogeneous stress field is presented. The experimental crack path trajectories,
described in [1], were used as data for the numerical simulations, recreating the actual stress

field governing the development of the crack path. Thus, the current theories of crack curving
and kinking could be examined by comparing them with the actual stress field parameters as
they develop along the experimentally observed crack path. The experimental curvilinear crack
path trajectories were formed in the tensile specimens with a hole positioned in the vicinity of a
potential crack path [1]. The numerical simulation, based on the solution of equivalent
boundary value problems with the possible perturbations of the crack path, is presented here.

1. Introduction

A commonly observed curvilinear crack propagation pattern is attributed to a mixed mode

stress state in the vicinity of the crack tip. Generally, a curvilinear, wave-like, crack path is

beneficial for material toughening [2]. The understanding of the mechanics of crack path

kinking and curving is important for future design of material compositions capable of

deflecting the crack propagation trajectory. This work aims to evaluate the crack path

deflection criteria described in the literature and to state typical aspects of the

experimentally observed crack path trajectory formation features. The approach

undertaken here is essentially different from existing work of similar aims. This

investigation is based strictly on experimental observations which are interpreted through a

numerical analysis of the observed crack patterns with finite length of the curving segments.

This makes it different from crack path analysis or predictions based on an infinitesimally
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small segment of crack kinking and curving, as compared with the length scale of the

problem [3-16].

The experimental datawere obtained and reported by Chudnovskyet al. [1]. Briefly,

the experimentalprocedurecanbe describedasfollows:

A polystyrene single notch specimenwith a hole positioned near the expectedcrack

path (Fig. la) wassubjectedto alow cyclefatigue loading. Cycleloadingwasusedto ensure

stable crack growth. This particular material does not exhibit a time dependent fracture

mechanism which could be attributed to fatigue crack propagation; therefore, in the

described experiment, cycle loading wasused to prevent dynamic unstable crack growth.

Severalgeometrieswere usedto obtain different intensitiesof crack hole interaction and to

ensurethat the region of this interaction would be confined to the center of the specimen,

thuspreventinginfluence from the endsof the specimens.The crackpropagationdescribed

in [1] is accompaniedby a damagezone typical for this material, the mechanicalnature of

which is formation of crazes.The typical size of the damagezone is significantly smaller

than the geometrical parameter of the problem (diameter of the hole). Thus, two

observationsare possible;observation on microscaleand on macroscale.The first, which

wasa primary subject of [1], is aimed at processestypical to the region in the vicinity of the

propagatingcrack tip, so the sizeof the damagezone becomesthe length parameter of the

observedphysical process. The latter considers the crack with the adjacent propagating

damagezone asone crack interacting with a hole. This would be the view of an observer

from a certain distance,when the damagezone appearsjust as some fuzzinessalong the

crack surface. Naturally, the results of the analysison macroscalecan serveas boundary

value datafor the analysisonmlcroscale.

A summary of the experimental data, observed in [1], is given in Figure 2. Six

.experimentalcurves,normalizedby the hole radius,in the effective region aregiven. Three

different cases of the crack interaction with a hole are represented here: crack attraction,

cases one, six and five; attraction and repulsion, cases three and two; and, finally, no effect
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on the crack path, casefour (the numbering sequencehere hasno significance; it is left in

the given form for data reference only).

2. Analytical Formulation and Numerical Procedure.

The dimension of the area of crack - hole interaction is significantly smaller than the crack

length, and smaller than the width of the specimen, as well. The size of this area can be

judged by the distance from the hole to the first crack path deviation from the rectilinear

trajectory. Therefore, the effective region can be assumed to be located in the infinite plate

and to be governed by the applied stress intensity factor. Thus, the small scale model may

be employed. The applied (or remote) stress intensity factor in this case is the stress

intensity factor which would act on a straight crack in an equal plate without a hole. The

length of this crack is equal to a projection of the curvilinear crack onto a horizontal

direction, Figure 1, a) and b). Thus, the solutions for the local (actual) stress intensity

factors and other crack growth criteria are obtained and given as in nondimensional form,

in most cases as a value normalized by the applied stress intensity factor Kia.

The stress field of a curvilinear crack interacting with a hole is obtained by employing

the numerical approach developed for a small scale model in [2,18]. The stress field is

represented by analytic potentials _(z) and _(z), Muskhelishvili [17]. The stress tensor

components in the coordinate system tangential (_,() to the crack surface can be written as

o_ + io(_ = _'+ _'+ e 2i8 (_" (z) + _" (z)) , (2.1)

o(_ -- io(_ = _'+ _'-- e 2i0 (z_'(z) + _" (z)). (2.2)

where 0 is the angle between the positive direction of x axis and tangential to the crack

surface (.

The crack is represented as an array of dislocations along its curvilinear trajectory.

Resulting stress potentials are



o ,z, If+L ° 'b s"z't'lds't:tx o,+it ,s,,23,

If ]• e b(s) tb(s) "(b(s) z t) ds (2 4)
(z) - _ L z - t (z - t) _ - _s ' ' "

Here, the integrals are taken along the crack surface L with s, a line length of the crack path

starting at the crack tip, being chosen as an integration variable, b(s) is an unknown

dislocation density distribution along the crack, and t is an integration point on the crack

corresponding to the integration variable s. a here is a standard coefficient, c_ =E/4(1-v 2)

in plain strain case, and a = E/4 in plain stress case. The singular terms under the integrals

(2.3) and (2.4) represent singular parts of stress potentials corresponding to a dislocation

with Burgers vector b(s)ds positioned at t. The analytic functions 4's and Os represent

regular parts of these potentials resulting from the interaction of the dislocation with a hole,

thus satisfying the traction free boundary conditions on the hole surface. These potentials

are, [18],

A

_s(b,z,t,) = _s(b,z-a, t-a) (2.5)

_s(b,z, t) = _s(b,z-a, t-a) - a_s(b,z-a,t-a) (2.6)

where a is center of the hole, R is the radius of the hole, and potentials corresponding to the

case a = 0 are

, +j - t)t_s(b'z't) 2_i b z z-t _(z-t*)2

s(b z t)= e 1 1 bR 2 R 2
, , _ b z z-t* + _-{2 z

t = R2/_

here t is a current location of the dislocation.

The statement of a traction free crack surface,

(2.7)

R 2

,_+ _ ¢_ (2.8)

o_q + io_ = 0, (2.9)

leads to the integral equation for determination of the unknown dislocation distribution
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density function b(s). The integral equation is obtained by substitutions of (2.3) and (2.4),

with the use of (2.5-8), into (2.1) and then satisfying (2.9). The resulting integral equation is

too long to reproduce in explicit form, and not all the details are important for development

of the numerical procedure. The resulting equation can be written in the form

Functions N and P in (2.10) are linear functions of their arguments. K(s,v) here is a

Fredholm type kernel of the integral equation (2.10). In reality, functions b(s) and the

conjugate to it have different Fredholm kernels not shown in (2.10) explicitly in order to

emphasize just the essential features of the equation. Important components of it are

functions t(s) and z(v). These functions represent the transformation of the integral

equation in a complex plane into a line integral equation in terms of real variables s and v

along the crack path L. An important restriction on possible crack trajectories is a

requirement that

it(s) - z(v)] -_ constJs- v I as (s -v) -_ o. (2.11)

Variables s and v are the real variables on the integration curve, measured as the curve

length starting from the crack tip. With condition (2.8) equation (2.7) becomes a first kind

Cauchy type singular integral equation and the integral is understood in terms of Cauchy

principal value.

Following [2], the dislocation density function b(s) in the form defined in (2.3-4), and

consequently in the equation (2.10), does not correspond to a standard dislocation density

used in fracture mechanics. The difference is in the coefficient. To use the standard

definition, ds has to be replaced by dt in equations (2.3,4) and (2.10). This definition was

used for the convenience of the numerical scheme only, and the difference is accounted for

in the determination of the stress intensity factors. Essentially, the coefficient dt/ds has been

absorbed into the unknown dislocation density for computational convenience. However,



the restriction on the integration path, following from the requirements of continuity of the

derivative dt/ds, remains. Thus, the crack trajectory has to be a smooth curve with a

continuous derivative.

Equation (2.10) is a homogeneous singular integral equation of the first kind on a

semi-infinite interval; thus, the stabilization procedure has to be used in the formulation of

the numerical procedure [18]. The regular numerical scheme is unstable because the

solution of singular integral equations of this kind, generally, is not unique. The families of

solutions of this equation are determined by the type of additional conditions imposed on

the solution of the integral equation. One of these conditions can be an asymptotic behavior

of the unknown function as s -, _,. The behavior of b(s) for large s should correspond to

remote loading conditions, or, as in the considered case, equivalently, to the reference

loading. Thus, the dislocation density function can be written in the following form

--S 2

I '1'
where K _° is remote (applied) stress intensity factor and function fl(s) is an unknown

function bounded on the integration interval and

b'(s)---- o(s -g) as s--_ o_. (2.13)

The form chosen here is convenient for computations in the vicinity of the crack tip and the

evaluation of the stress intensity factors at the crack tip, that is

• 0

o + IKIIK I

flO

i0 °
= i fl(0)e (2.14)

0 o here is the angle of the tangential at the crack tip. K with superscript o corresponds to

local values of the stress intensity factors for Mode I and Mode II accordingly.

After substitution of (2.12) into (2.10) the equation is mapped onto a finite interval and



then the collocation procedure is applied, in the form given by Rubinstein, [18], for the

semi-infinite interval. This numerical procedure is based on the technique introduced by

Erdogan and Gupta, [19].

The collocation scheme uses Gaus - Chebyshev quadrature formula and requires the

node distribution along the roots of Chebyshev polynomials of the first and second kind.

To secure the accuracy of the integration procedure, a nonlinear equation

IXk(l + = s k (2.15)
(y' (x)) _) ½dx

x °

was solved to establish the relation between node s k and coordinates on the trajectory x,y.

(Equation (2.13) corresponds to a mapped state.) s k here is a value of corresponding

Chebyshev root, x ° is a coordinate of the crack tip, and function y(x) specifies the crack

path.

3. Observation of the experimental trajectories.

The experimental crack path trajectories were analyzed by employing the technique

described above. The experimental trajectories were approximated by polynomials using

the list square method. These trajectories were used as initial data for the computational

scheme. The computations were conducted for variable crack length along the given

trajectories and for cases with a possibility of crack path deviations from the given

experimental path.

The aim of the analysis is to establish a dominant characteristic parameter determining

the crack path formation. In pursuit of this, the main fracture parameters are analyzed;

namely, the focus is on the variations of the stress intensity factors and on the variation of

the energy release rate due to the crack advance. The experimental specimen is illustrated

in Figure la); the geometry of the active region is exaggerated there in order to make it

visible on the figure. The maximal linear dimension of the region, where any significant

interaction between the hole and a crack take place, is much smaller than the width of the

specimen; therefore, small scale analysis can be applied. The resulting data are given as



nondimensional values which were obtained by normalizing the stress intensity factors by

the reference value of K I (illustrated in Figure lb); the energy release rate is given as a

value normalized by the corresponding reference value.

3.1 Variations of the crack tip parameters along the trajectories. The results of the

computations for crack growth along the experimentalIy obtained trajectories are given in

Figures 3-5. Cases marked on these figures correspond to trajectories marked on Figure 2.

The data depicted in Figures 3-5 demonstrate that the crack growth is not characterized by

monotonic increase of the stress intensity factor K I or by zero value of KII as is often

expected. Trajectories 3 and 4 are at the distance of approximately 2R (R is the radius of

the hole), and cracks growing along these trajectories experience very weak interaction with

the hole, although KII rises to about 5% of K I. Remarkably, cracks growing along the

trajectories 1, 5, and 6 experience a very similar history for all analyzed parameters.

Trajectory 2 is located in the region R < y < 2R (J' is a vertical coordinate of the trajectory

origin with the center of the hole at y = 0). This region is evidently characterized by a crack

- hole interaction sufficient to turn the crack towards the hole, but not sufficient to maintain

this direction, and eventually the crack returns to its original course.

The history of KII, Figure 4, is given in values normalized by the reference value of K I,

which may be misleading in the way that the resulting data become relatively small. The

values of KII vary in the range of - 15% of the reference Mode I stress intensity factor. The

generally accepted assumption that cracks grow in the direction of zero KII is not supported

by the obtained data. The possibility of numerical error was ruled out after multiple

repetitions of the computations with different values of the parameters critical for the

numerical scheme, such as number of nodes in the integration procedure, degree of the

approximation polynomials, and so on. The frequency of the registered data points on the

trajectories is sufficiently higher than the frequency of the oscillation of the values of KII,

which rules out the possibility of insufficient mesh size in trajectory digitizing. Thus, it was

made sure that the accuracy of the method of analysis is significantly higher than the



observedamplitude of KII oscillation. It appears that any crack path trajectory with finite

curvature will have some finite value of Mode II stress intensity component and it will most

likely experience this kind of oscillation. The explanation of this will be given in the

following section.

Relatively small values of the Mode II component of the local stresses make the energy

release rate due to the crack advance behave similarly to the Mode I stress intensity factor.

The J-integral is not path independent in the case of a curvilinear crack (this matter is

discussed in [2]), and, additionally, due to the presence of the hole, the energy release of the

system cannot be associated with the local energy release at the crack tip. Thus, the

traditional thought that the crack will propagate in the direction of maximal energy release

of the system is not justifiable, and as is shown in Figure 5, the crack may propagate in the

direction of decreasing energy release rate, as compared with its history along the crack

path. This means that the decisive factor of the crack growth direction is a strictly local

preference of the crack tip orientation.

The data obtained here cannot support the suggestion [11,15] that the derivative

aKii/aL ( L is the crack length) plays a significant role in the crack curving mechanism.

However, one may make an argument against the importance of this derivative, since, as the

data show below, the local variations with respect to a potential deflection angle are more

important for the crack path formation, than the history type dependence on the crack

length increment.

3.2 Variations of the crack tip parameters with respect to possible crack path deflections.

In this part of the investigation the crack propagation of the numerical model was assumed

to be partially along the given trajectory up to certain point, and then small perturbations of

the experimental path were given. These perturbations were given in the form of a circular

arc tangential to the original path and small in length if compared with any geometrical

parameter of the problem. The length of these arcs was chosen so small that it did not affect

the result, and the only important parameter that remained was the angle formed by the



tangential at the free end of the arc and by the tangential to the actual crack path trajectory

at the point correspondent to the increment of the crack advance equal to the arc length.

These crack path perturbations are illustrated schematically in Figure 6. The length of the

arcs is enlarged in Figure 6 for better visualization. The sign of the angle of the crack path

deflection is marked in Figure 6.

The aim of this analysis is to determine what makes the actual crack path preferable

with respect to other possible crack path directions. The results are given in Figure 7a-d for

three crack tip positions xo = 2.0, 3.0, 4.0 and deflections of - 10 degrees. The variation of

the Mode II stress intensity factor is given for one position only because it exhibits

practically equivalent behavior for all cases considered. Variations of the Mode I stress

intensity factor are given for all three cases. The data for the energy release rate are

omitted here since they practically duplicate the variations of K I with changed scale.

The data for K I are normalized by the value of KI(O =0) corresponding to zero

deflection angle, and the values of KII are normalized by the value of the reference Mode I

stress intensity factor, as in the previous section.

None of the considered positions can be described as zero KII direction, as a direction

of maximal K I, or as a direction of maximal energy release rate due to the crack advance. By

the directions of maximal value here, one means maximal value with respect to an angle of

possible crack path perturbations. Directions of maximal energy release rate due to the

crack advance are slightly off the course of the crack path. These directions practically

coincide with KII = 0 direction and, therefore, coincide with maximal K I direction, as it was

predicted by Cotterell and Rice [9]. On Figure 7b, directions of zero KII are marked on the

curves. The difference between the maximal K I directions and the marked directions of

KII = 0 is less than 0.2 degrees, and this is a well reproduced result. The difference between

the actual crack path direction and direction of a maximal energy release varies between 2

to 15 degrees. Denoting the deflection angle cz and the energy release rate per crack

advance G, we observe that for higher value of the derivative 0 G/o o_ at c_ = 0, the direction
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of the maximal G is close to the actual path. It seems to be more suitable physically to

describe this process in terms of the energy release rate rather than in terms of stress

intensity factor, although quantitatively both would give the same result, since direction of

maximal K I coincides with direction of zero KII.

4. Proposed crack path deflection mechanism.

To explain the observed data which were described in the previous section, it is

essential to consider the material properties exhibited during the crack growth process. As

was pointed out in the introduction, the material which was used in the experiment may be

characterized by the formation of a narrow nonlinear zone along the crack path. In the

framework of linear fracture mechanics, the crack and the surrounding zone cannot be

separated and are treated as a single object. The resulting fracture mechanics parameters

then may be interpreted as remote, or applied, values controlling the nonlinear region. The

nonlinear zone acts as a buffer for the crack in absorbing the asymmetry of the applied

stress field. As a result, the nonlinear zone becomes asymmetric with respect to a crack line.

The nature of the nonlinear deformation mechanism is not important in principle, and for

purposes of this study, it may be characterized by the quantity of the stress field asymmetry

it can absorb before turning the crack. In the framework of linear fracture mechanics, the

derivative 0 G/o o_at a = 0 and KII are the only parameters that may be used as a measure of

the asymmetry of the applied stress field acting in the vicinity of a crack tip. Of these two

parameters, the energy release gradient with respect to the deflection angle, a G/a _, has a

better physical interpretation in terms of the energy release rate increase (benefit) due to

the crack tip rotation. It is a material property that determines the critical value of the

energy release rate benefit required to rotate the crack tip. On the other hand, considering

that both parameters play similar roles, one has to note that the critical value of KII would

be easier to measure. In Figure 8, schematic development of an asymmetric crack

propagation process zone is illustrated. Thus,
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a - b 0G

S a + b _ 0_ (_=0) (3.1)

where b and a are linear dimensions of the wake of the nonlinear process zone, as

illustrated in Figure 8. The ratio S on the right of (3.1) may be taken as a geometric

criterion of the asymmetric development of the nonlinear region. For positive values of a

and b, this ratio changes from -1 to 1, with 0 corresponding to the symmetric case. Sign of S

corresponds to the direction of the angle of deflection.

The critical value of the energy release rate gradient at which material will require a

change in crack growth direction may determine the instant at which the crack tip

orientation will change, but it cannot, generally speaking, determine the amount of crack tip

deflection because of the buffering effect of the nonlinear process zone. The new crack

growth direction will most likely be dictated by the microstructure of the material at the

particular instant, such as the grain size, or local orientation of crystallographic planes. At

this point, the crack will continue to grow in that direction until the critical situation

develops again, and the energy release rate gradient reaches the critical value for the

material; consequently, the crack growth direction will change again. Thus, the ductile

materials with high buffering capability can tolerate a higher degree of stress field

asymmetry, and require smaller crack path alterations to accommodate it. Therefore,

ductile materials will exhibit smooth crack path trajectories, and brittle materials with a very

narrow nonlinear zone or without this buffering zone will exhibit sharp turns along the

crack growing path. This type of observation was reported in [20].

In the analyzed experiment, the critical value of the energy release rate gradient (or

critical value of KII ) was never reached in case 4, and it was nearly reached in case 3. In

other cases, as the curvature of the trajectory changes, the crack path experiences a

sequence of corrections in its direction; this explains the oscillation of KII observed earlier.

The frequency of this oscillation is determined by the material property associated with a

critical energy release rate gradient and by the intensity of the applied stress field. Case 2

clearly demonstrates this oscillation of KII, as is shown in Figure 4.
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It follows, that under mixed mode loading, only the ideally brittle materials are capable

of forming a crack path with KII = 0 along the significant crack path segments, and these

segments will be nearly straight line intervals.

5. Discussion and conclusions.

The experimental crack path trajectories were analyzed to establish the governing

mechanism of the crack path formation. The experimental data were supplied by the

authors of reference [1]. The experimental crack path trajectories were used as boundary

value data for the numerical analysis. Through accurate numerical procedure the essential

fracture mechanics parameters were analyzed as they develop along the practical crack path

trajectories and as they change due to crack path perturbations.

Results reported here were reproduced from data from different specimens, which

shows their reliability.

It was observed that the crack path is not characterized by monotonic increase of the

energy release rate due to the crack advance, and the crack growth direction is controlled by

local gradients of the energy release rate with respect to a deflection angle.

The proposed crack path formation mechanism is based on the assumption that the

process zone formed during the crack growth serves as a buffer between the applied load

asymmetry and the crack tip reaction to it. Thus, the magnitude of the energy release rate

gradient, required to alter the crack growth direction, is associated with the process zone in

the vicinity of the crack tip. The ability of this zone to transmit the asymmetric properties of

the applied stress field is a material property, and is important for the crack path alteration.

In other words, the buffering properties of the process zone must be characterized by the

material constant. This constant can be associated with the maximal value of the energy

release rate gradient with respect to deflection angle, which the crack process zone can

tolerate without a change in crack growth direction. This property of the material may be

described as a maximal allowable geometrical asymmetry of the process zone, which can be

specified by the parameter S introduced in equation (3.1).
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The results of the numerical analysis show that the direction of the maximal energy

release rate due to the crack advance coincides with the direction of the zero Mode II stress

intensity factor, which is consistent with [9]. Therefore, the critical value of KII, which

determines the instant when the crack tip changes orientation for a particular material, can

be used as an equivalent to the energy release rate gradient. The disadvantage of using the

KII criterion is that for the crack growth, the certain value of the Mode I stress intensity

factor has to be maintained, and the combination of both Modes of the applied stress field

is important.

As the crack tip approaches the inhomogeneity, the magnitude of the energy release

rate gradient increases; after it reaches the critical value for the material, the crack growing

direction changes until the critical value of the gradient is reached again. If the material is

homogeneous, this process can be accomplished in small crack growth increments forming a

smooth crack path curve. As was mentioned, the Mode II stress intensity factor plays a role

similar to the energy release rate gradient in controlling the crack path. The curvilinear

crack path experiences continuous correction, and, therefore, the oscillations of KII are

observed along the crack path. Accordingly, only in very brittle materials with negligible

nonlinear process zone size, the crack path may exhibit sharp turns and may have straight

line intervals of significant length with near zero values of KII.
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